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1. Introduction 
 
Automatic Machine Vision involves humans building machines capable of recognising objects 
and scenes in digital images without further human assistance.  
 
Machine vision is a bottleneck in robotics and automated systems. When human programmers 
construct vision systems they are usually designed so that the program architecture and the data 
are optimised for the particular problem and classification technique being used. In general 
machine vision systems are hand-crafted to give the best results for a particular application, but 
are brittle and perform poorly outside their narrow specification, and lack any ability to adapt. 
 
On this project we have been researching a method of creating flexible machine vision systems 
that can modify their behaviour and evolve in particular environments to recognise anything that 
an operator has indicated as being ‘interesting’ in that environment. For example, Figure 1 shows 
typical objects that a house-tidying robot might encounter during its everyday duties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
Figure 1. It is proposed that objects be contoured prior to them being analysed and learned 
 
The intention is that non-programmers can train vision systems by ‘pointing’ at an object in a 
scene, e.g. drawing a contour round it, with the intention that the system will adapt and evolve the 
ability to recognise such objects automatically. The approach is based on new multi-level 
combinatorial structures supporting an architecture that allows vision systems to generalise and 
adapt to recognise new classes of objects. This multilevel architecture is based on new 
combinatorial mathematics in the science of complex systems [6]. 
 
There are many approaches to machine vision. These include algorithmic knowledge-based 
programming, neural network systems that learn from examples, and combinations of both. Many 
practical systems are based on algorithms or procedures making opportunistic use of special 
features characterising the particular objects and scenes. Although this may give acceptable 
performance for a given application, there is usually a poor ability to generalise to other similar 
scenes, and no ability to generalise to different environments. A system designed to inspect 
industrial parts is unlikely to be incorporated in a mobile planetary robot or to be used to read car 
number plates. 
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Thus we seek a machine vision architecture that can: 
 

· use point-and-learn training 
· work for cluttered scenes 
· adapt to changes in objects and scenes 
· adapt to any scene or environment 

 
To achieve this we propose a multilevel architecture in which machine vision systems 
 

· evolve appropriate retinal configurations 
· evolve connectivities to represent spatial relationships 
· abstract their own higher level constructs 
· levels are integrated by new relational mathematics 

 
The key feature of the architecture is the ability of the system to abstract its own constructs from 
data in a multilevel algebraic representation. This allows the system to learn objects that may 
change through time, and to adapt to learn radically new objects and scenes without the need to 
change the underlying program. These requirements are very demanding and beyond any existing 
machine vision systems. 
 
Our approach to this problem is based on the mathematics of multilevel hypernetworks, which 
generalise network theory to multilevel multidimensional space. Hypernetworks naturally give 
rise to multilevel systems, and provide the essential structural architecture for self-adapting 
machine vision systems. This mathematics is introduced in Section2. 
 
Section 3 considers the implications of the mathematical definitions for the architecture of the 
system we propose to build. 
 
Section 4 reports our investigations into low level image processing techniques, focussing on 
analogues of neuronal processing. Algorithmic approaches are also discussed later in the report. 
 
Section 5 discusses higher level vision processing within our architecture, and attempts to present 
strong evidence that what we propose is feasible. 
 
Section 6 gives our conclusion that, although our objectives are very ambitious, it will be possible 
to build machine vision systems that can adapt from one field of application another. Also, such 
systems could be embedded in human-computer systems opening up powerful new areas of 
application. 
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2. A Mathematical Theory of Multilevel Systems. 
 

2.1 Multilevel aggregations 
Except for the simplest images, a single pixel tells us almost nothing. In combination with other 
pixels it may tell us more. For example, it may be part of a polygon formed from pixels of similar 
greyscales. The polygon may have a characteristic shape – an emergent property not possessed by 
the individual pixels – that can be identified as an object. Thus pixels aggregate into polygons as 
illustrated in Figure 2. 
 
 
                                                            
 
 
 
 
 
 
(a) original image                 (b) object of interest                (c) enlarged object                  (d) polygon 

Figure 2. Similar pixels grouped into polygons. 
 
The overall scheme is illustrated below, where the pixels exist at an arbitrary lowest level, Level 
N. It is possible to have lower sub-pixel levels but that will not be considered in this report. The 
Level N pixel may aggregate with pixels of ‘similar’ colour to form polygons at Level N+1. This 
aggregation depends on the adjacency properties of the pixels, so the polygons are more than just 
sets of pixels. They are structured sets of pixels. Finally, the two polygons are spatially related to 
form the ‘dividing cell’ structure at Level N+2, which is what the user wants in this case, where 
the image is one of a sequence of in-vivo observations of cell division. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Machine vision a multilevel systems 
 
Thus machine vision occurs within a multilevel system. We avoid the use of the word ‘hierarchy’ 
because it has many misleading connotations. In general there are more than three levels. Also, 
the levels are somewhat arbitrary, and new levels can be defined between existing levels. 

    

 
object 

 
 
 
 

polygons 
 
 
 
 

pixels 

 
Level N+2 
 
 
 
 
Level N+1 
 
 
 
 
Level N 

 

dividing cell 

 



        

22:51:53  29/05/2006                                                                                                                 Page 5 of 37 

 
 
  
  
  
  
  
  
Figure 4. An image of an arch. 
 
The fundamental idea behind our architecture is that of n-ary relations. To illustrate this consider 
the image of an arch in Figure 4. As we view it, we see two pillars supporting a crosspiece. The 
crosspiece, for example, is made up of the pixels marked a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, and 
p. These sixteen pixels are assembled by a 16-ary relation, RRB, into a rectangular block.  

The construct ‘rectangular block’ defines a set of objects which will be written RB = {x | x is a 
rectangular block}. In order to be operational, this requires a pattern recogniser, PRB, which is 
able to say of any candidate for membership, x, that x is a rectangular block, PRB(x) = True, or that 
x is not a rectangular block, PRB(x) = False. 

Generally pattern recognisers need to refer to a set of features of the object. In this case there are 
sixteen features, {x1, x2, …, x16}, the pixels used to make up the block. Each of these xi needs to be 
of the right type, so the overall pattern recogniser requires a set of sub-pattern recognisers, PRB,i, 
with the requirement that PRB,i(xi) = True. 

Now it can be seen that the pattern recognition involves two types of decision: 

(i) for each xi, it is necessary that xi is of the right type, here a dark pixel. PRB,i (xi) = True. 

(ii) given that all the xi are dark pixels, it is necessary to established that they are assembled 
properly so that the relational structure holds with PRB(x1, x2, …, x16) = True. 

Clearly (i) comes before (ii). There is no point applying expensive pattern recognition procedures 
to objects which are of the wrong type to form the pattern. However, there is danger of an 
infinitive regress: To test RRB it is necessary to test RRB,i for each xi. But to test RRB,i it is 
necessary to reduce xi to its parts, and test them. And so on. Where can it all end? In robotics and 
machine vision the answer to this question is easy. Top-down reductionism ends when the pattern 
recognisers are grounded in sensor data. In other words the sensors ‘ground’ everything the 
machine can know about its environment (Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
Figure 5. Reductionist grounding prevents infinite regress in pattern recognition 
 
 

PRBi(xi) = True ? a b c d e f g h 
i j k l m n o p 

PRB(x1, x2, …, x16) = True ? 
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 cross-piece a b c d e f g h 
i j k l m n o p 
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When PRB(x1, x2, …, x16) = True for a particular set of features, {a, b, c, …}, we give the resulting 
object a name, here C, and write s(C)= á a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p; RRBñ. s(C) is 
called a simplex and the elements áañ, ábñ, ácñ, etc are called its vertices. The parts or features of 
an object can be said to lie at a lower level in its representation than the object itself. If the parts 
are drawn within an Euler circle (ellipse), the name of the object can be drawn as the apex of a 
hierarchical cone, as illustrated in Figure 6. 
 
 
 
 
 
 
 
 
 
 
Figure 6. A hierarchical cone. 
 
The relation RRB and all its reductionist sub-relations will be called a construct. Clearly, in order 
for a construct to be operational, it must be grounded. Generally constructs are named, and they 
define sets of named objects. E.g., we can use the name ‘rectangular blocks’, and write 
rectangular blocks = { x | x is a rectangular block }, which is an intensional definition. 
Alternatively we can write Rectangular Blocks = {RB1, RB2, …, RBn}, where each of RBi is the 
name of a particular rectangular block. This is an extensional definition. 

Figure 7 shows the two stages of assembly of the arch; which is defined as structured set of 
blocks. The blocks are defined as structured sets of pixels; and the pixels are grounded in reality 
through the camera sensor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Multilevel construct aggregation 
 
The pillars named as A and B in the image are also structured sets of pixels, as shown in Figure 7. 
The intermediate constructs A, B and C can be assembled by a 3-ary relation, Rarch to form the 
construct called an ARCH. Thus we have s(ARCH) = á A, B, C; Rarch ñ. In this way we build 
primitive structures from atomic constructs (pixels), we build intermediate constructs from these 
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at a higher level in the multilevel representation, and so on, until we recognise objects within 
scenes at the highest level. At every level we use named constructs to reference the objects 
abstracted. 

This example illustrates a major problem in machine vision. The notions of ‘pillars’ and 
‘crosspieces’ are application-specific and social constructs inside programmers’ heads. Vision 
systems are highly dependent on programmers’ ways of construing the visual universe. It is well 
known that this can be very different between different people [1], and there is no guarantee that a 
given programmer will choose the most appropriate constructs. Much better to have the vision 
system abstract these constructs for itself. 

2.2 Sets versus relational structure 
The cone construction illustrates a number of interesting and important possibilities. Figure 8(a) 
shows that the same set can be assembled in different ways. Thus the set of vertices alone is not 
sufficient to represent a simplex. For full knowledge we need to know the relation, which is why 
we use the notation  á v0, v1, … , vn ; R ñ, which provides information on both the vertices of the 
simplex and on the relation that assembles those vertices into the structure. 

 
 
 
 
 
 
 
 
 
 
 

(a) features assembled to         (b) relational cones with   (b) relational cones with  
       form a face               a shared base          intersecting cone bases 
 
Figure 8. Hierarchical cones representing assembly of parts into holes. 
 

2.3 Alpha and Beta Aggregations 
 
The use of n-ary relations to build objects out of their parts establishes hierarchical levels. 
However, there is a subtlety in hierarchical aggregation involving another kind of aggregation. 
This is illustrated in Figure 9 where three arches are assembled from their components. These 
assemblies require all the parts for their n-ary relation to hold. We call this an a-aggregation, or 
an AND-aggregation. At the next level the arches are gathered up to form a set. In this case A-1 
or A-2 or A-3 is sufficient for an arch. We call this a b-aggregation, or an OR-aggregation. Thus 
the set of arches is defined by a disjunction of conjunctions, Új  á vj1, … , vjn ; Rj ñ. 
 
 
 
 
 
 
 

R1 R3 

f3 f1 

R2 R1 
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Figure 9.  Two different types of multilevel aggregation 
 
The implications of this for the architecture we are trying to build is that some relations will be 
assembling new structures between levels (AND) and some will establish equivalences on sets of 
structures. For example, in Figure 10 sets of pixels are aggregated into examples of the character 
‘m’. The red character on the left was stored in the database, and the other examples next to it 
were matched and not stored. This set of examples of the ‘m’ are called ‘Type-1 m’ The red 
character on the right did not match the first m, and was also stored in the database. It determines 
the set of ‘Type-2 m’ character. Then either a Type-1 OR Type-2 ‘m’ is sufficient to belong the 
class of objects called ‘m’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. A double-OR machine vision multilevel structure 
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2.4 Numerical Traffic on the Multilevel Relational Backcloth 
 
The generality of multilevel systems is that as one moves up the levels, there is a trade off of 
numbers for structures. In other words, things that exist as individuals at Level N+k are counted to 
become numbers at Level N+k+1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. structures at Level N represented by numbers at Level N+2 
 
 
In general the multilevel relational structure of a system acts as a kind of relatively backcloth 
supporting the relatively dynamics traffic of system activity. In machine vision one is constantly 
counting things such as numbers of pixels or greyscale distributions. These patterns of numbers 
will be called traffic in this report. 
 
Most importantly, in multilevel systems, the traffic at one level must aggregate or disaggregate 
coherently to other levels. In machine vision and pattern recognition there are both feed-forward 
and feed-backwards modes where numbers are flowing up and down the multilevel representation. 

2.5 Disaggregation, Segmentation and Intermediate Words 
 

                                     
 
              (a) spotted dog illusion                                             (b) How many pandas? 
 
Figure 12. Extreme problems in segmentation 
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Machine vision is both a bottom-up and top-down process. Figure 12 shows two images in which 
there are objects that are difficult to abstract, even for human vision. The problem is to subdivide 
the image into meaningful parts from which the objects of interest can be reconstructed. For 
example, in Figure 13(b) a ‘dog shape’ is abstracted as a structured set of pixels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) The Intermediate Word Problem                                    (b) Finding shapes as intermediate words 

Figure 13. Top-down machine vision as the Intermediate Word problem 
 
In this example the intermediate words relate to segments of the image, and the process of 
subdividing the image is usually called segmentation. Here it illustrates how the multilevel 
structure is constructed, and why the levels are always relative. Initially the dog shape is 
abstracted at a lower level to the image at, say, Level N+k-1. Depending on the image, there may 
be other shapes at the level – perhaps another dog or two. The segmentation may progress further, 
possibly identifying the parts of the dog such as its head, legs, body and tail at a lower level, say, 
Level N+k-2. On the other hand, the parts identified might be aggregated.  
 
For example, if there were other dog shapes in the picture they might be aggregated into a ‘pack’ 
between Level N+k  and Level N+k-1. This could be called Level N+k+½ but it is much easier to 
renumber all the levels. So, the image exists at Level N+k, the pack exists at Level N+k-1 and the 
dog shape now exists at Level N+k-2 with parts of the dog existing at Level N+k-3. No matter 
how many levels of description are required, new intermediate levels can always be inserted and 
the levels renumbered. 
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Figure 14. Segmentation and aggregation as complementary top-down and bottom up processes 
 
In general there is an ordering between the levels defined by the ‘part of’ relation. Then if x is 
‘part of’ y, x is at a lower level in the multilevel system to y, and y belongs to a set of parts that 
aggregate into x which we illustrate with the cone construction seen earlier. In particular the cone 
construction has an upwards arrow, indicating the aggregation process, and another downwards 
arrow indicating the segmentation process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) bottom-up aggregation of parts into wholes                        (b) top-down disaggregation to common parts 
 
Figure 15.The part-whole structure is a quasi-order with a lattice hierarchy 
 
 
In our theory we make a distinction between objects and features and the names of objects of 
objects and features. For example, in Figure 15 the parts of the fish could be named the ‘mouth’, 
the ‘dorsal fin’, the ‘lower fin’, the ‘eye’, and the ‘tail’. Similarly, the shoe is made up of the 
‘heel’ and the ‘toe’. Allowing things to aggregate into more than one higher level object creates a 
lattice hierarchy which has a richer structure than a conventional tree hierarchy (Figure 16). This 
multilevel ordering is a quasi order (reflexive and transitive but not anti-symmetric ). 
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                                                           shoal                                            tennis equipment 
1 
 
 
                                                 fish-1      fish-2     fish-3                    tennis shoe     tennis racquet    … 
 
 
 
 
                     eye       tail     dorsal fin      lower fin       mouth-heel              toe 
 
Figure 16. A  lattice hierarchy has more structure than a tree hierarchy 
 
  
One of the most difficult tasks in machine vision is to segment a complex scene into ‘relevant’ 
parts. Generally one seeks areas that contain discrete objects, such as the coffee mug shown in 
Figure 17. In Figure 17(a) we show a training object identified by a user. This low-skilled method 
of teaching the system is the only kind of input the trainer gives. Following this, the system has to 
find discrete objects in the image to be recognised as of the same type as the training items. 

Figure 17(b) illustrates the many problems involved in segmenting images. The mug has no well 
defined contour, since neither it nor the background are homogeneous in greyscale. In some 
places the mug merges into the dark background, while in other places it is a relatively light grey 
due to the reflected light.  

 
 

     
 
(a) user defined object   (b) how to segment? 
 
Figure 17. The segmentation problem 
 
Although the white ellipse is a strong signal to humans that this is a cylindrical object, the 
machine knows nothing of this a priori. In many places the mug has highlights, making it visually 
very variable. In the first instance we do not assume that that our system will have top-down 
context knowledge such as ‘if the scene contains an ellipse, then it contains a cylinder’. 

Many of the examples in this paper have been pre-segmented binary images, the methods 
developed here are highly applicable to greyscale and coloured images. The relational method can 
be very powerful when, for example, the ‘satellite’ pixels are compared to the centre and 
classified as light/darker. This approach can lead to areas with varying greyscales but 
homogeneous greyscale gradient. This has been successfully applied in scientific measurement 
systems. The details are beyond the scope of this paper, but further details can be found in [7][8].  
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3. Constraints on Data Structures and Operators 
 
The mathematical structure sketched in the previous section has implications for the system we 
want to implement. In particular all operators implementing hierarchical cones must be generic, 
and must not appeal to system specific properties.  
 

3.1 Parallel versus Sequential processing 
Our method assumes that neuronal responses at one level are assembled to give a neuronal 
response at the next, as illustrated in Figure 18. This raises the question whether each local set of 
inputs has its own neuron to process the data locally, or whether the information is communicated 
to a remote specialist neuron for processing, with the result brought back by a ‘return axon’ to 
retain position information. This second case presumably requires a ‘position dendrite’ to provide 
the position information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) each areas has its own neuron                 (b) a remote neuron processes the input with axons  
                                                                            delivering the result 

Figure 18. The local versus remote processing problem 
 
Option1: Human vision appears allows us to identify objects at very fine resolution, of the order 
of pixels. Thus for the configuration of Figure 18(a), with spatial information implicit in the 
hardware, each input pixel is fully equipped with all the pattern recognition machinery necessary 
to recognise everything. This seems very unlikely. 

Option 2: The specialised neuron configuration of Figure 18(b) requires spatial information to be 
communicated explicitly to the neuron in order to switch on and off the correct response axons. 
Pursuing a strictly biological analogy in which the firing of the neuron is communicated by all 
axons, it is necessary to introduce some more hardware to do this switching. However, it seems 
that in humans the brains undertakes different vision processing tasks in different parts, 
suggesting that the processing is indeed done remotely.  

TT T

T   T 

T

T   T 

Response axons 

position 
dendrites 
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There is the question of how such hardware would process a scene containing many for the same 
item. Suppose there was a 100 x 100 array of T shapes, with a few missing. Would a single 
specialised T-recogniser process them all simultaneous? And even if it could, how would it 
process the position so that the right locations correctly got the ‘T-recognised’ message? 

We call this the local-remote processing problem. Our experiments show that Option 1 gives a 
powerful method of processing images to recognise simple objects, but it fails due to 
combinatorial explosion. Option 2 has the problem that, within our architecture, the data has to be 
sent to the processing unit and the result returned, and the mechanisms for this are not obvious. 

At this point in the research we had another idea, based on saccades in biological vision. Our idea 
was that the vision process could be dynamic with the focus at any point in time changing 
according to random movements initiated by coupling the neural response to artificial muscles 
that move the focus. There are six such muscles in the human eye1. This approach transforms 
pattern recognition in the vision problem into recognising objects and scenes as time sequences of 
neural responses corresponding to sub-object recognition. The sequences provide the relational 
structure necessary in our architecture. 

 

3.2 The architecture of the hierarchical cone 
 
We have identified two major two computational models for implementing assembly relations, R. 
One is what we call the neural computational model in which a set of inputs, possibly time 
dependent, x1, x2, x3, x4, x5, x6, x7, x8, x9 enters the processing element and either causes it to fire or 
not fire with output zero or 1. The other is the algorithmic model in which the inputs are used to 
calculate various output, y1, y2, y3, …. a typical implementation of this is the function or 
subroutine taking input values and returning output values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                (b) the neuronal model                                            (c) the algorithmic model 
 
Figure 19. Models of computation for the multilevel cone 
 
These models have different properties. The ‘pure’ neuronal model can only output ones and 
zeros. In implementations such as the multilevel perceptron, weighted links can convert these 

                                                   
1 Eye and Brain, R. Gregory. Oxford University Press (Oxford), Page 45. 1998 

x1, x2, x3, x4, x5, x6, x7, x8, x9 

R 

y1,        y2,       y3 

x1, x2, x3, x4, x5, x6, x7, x8, x9 

R 

0 or 1 
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other values, but even there the fundamental assumption is that the neuron either does or does not 
fire. In contrast the algorithmic model is at first sight more general, since it is able to output any 
number of ‘independent’ values.  

In principle, neuronal implementations, are based on the assumption that the firing conditions can 
be learned from examples which makes this approach very attractive for our purposes. However 
we have to avoid the naïve assumption that a multi-neuron system such as the multilevel 
perceptron can accept input from millions of pixels and train to recognise anything. In the first 
instance such a complicated processing architecture would never converge in practice, and in the 
second instance there are issues of generalisation and equivalence that cannot be addressed. 

Algorithmic models present us with the major problem that as the system moves from one 
application area to another, even if it were possible, we do not know how to make a system that 
will create new algorithmic functions and implement them as code. Therefore the most we can 
hope to achieve using the algorithmic model is to implement fixed algorithms that interpret data 
at a high level of abstraction and generality. For example, an algorithm might usefully find a 
polygon (blob) in an image and calculate numbers such as the statistical properties of the 
greyscale or dimensions, and output these to feed forward through other processing unit. In 
contrast to this, we cannot conceive that a system with algorithms designed to process low-noise 
digital camera images could autonomously create new algorithms to deal with, say, high-noise 
speckled radar images. 

The apparent distinction between neuronal and algorithmic processes is less clear than it might 
appear at first sight. On the one hand, neuronal architectures are algorithms when implemented 
on digital computers. On the other hand, neuronal computers can be designed to produce multiple 
output weighted outputs. Kolmogorov showed that a system of neuronal units can be configured 
to take m general numerical inputs, process its data, and produce n numerical outputs. Any 
function f:Rm ® Rn can be implemented on such as system. Of course this result is theoretical. In 
principle any function with m inputs and n outputs can be implemented on a multilevel perceptron. 
In practice, finding a particular implementation may be impossible because the search never 
converges. 

Since our objectives are practical with an engineering goal, we make opportunistic use of both 
neuronal and algorithmic processing approaches. But for either approach there are the questions 
shown in Figure 20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.  the hierarchical cone as a general model for hierarchical feed forward processing 
 

what are the elements to be assembled? 
how are they represented and stored? 

what is the assembly relation, R? 
how does it know what data to expect? 
how does it process the data? R 

what are the outputs of R? 
how are its outputs stored? 

x1, x2, x3, …. 

y1, y2, y3, … 
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We propose that the system be composed of a set of relational aggregators, Ri, where each Ri has 
 
 (i) a domain finder, Di, deciding what is the set x1, x2, x3, … and related data 

 (ii) a computational unit, Ci, taking data from the domain and processing it 

 (iii) a mechanism to place to the output of Ci , y1, y2, y3, … into the database 

 (iv) data structures for the x1, x2, x3, … and the y1, y2, y3, … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. The multilevel architecture consists of layers of relational aggregators 
 
 
These relational aggregators will be arranged in layers as illustrated in Figure 21. The cones will 
be both AND and OR aggregations and may be implemented as neuronal or algorithmic 
processors. Both are constrained by the following rules: 

Computational Rules:  

(1) The computational model or metamodel underlying a relational processor cannot change. It is 
hard-wired into the genotype of system. 

(2) The system must learn, meaning that its computation at time t is dependent on computations 
at time t-k, and changes to its database. 

(3) There is no high-level symbol system specific knowledge explicitly encoded in the system. 

Level N+3 
 
 
Level N+2 
 
 
Level N+1 
 
 
Level N 
 
 

Preprocessor 
 

Postprocessor 
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3.3 Architectural considerations 
 
 
The research described in this paper, in the context of our objectives leads us to the following 
principles: 
 
Principle 1. Low retinal configurations will aggregate data to form higher level constructs 
 
Principle 2. The constructs will depend on spatial relations 
 
Principle 3. The retinal and higher level configurations should not be constrained by design, but 
should be allowed to emerge from the images and scenes in its environment 
 
Principle 4. The spatial relations in the system should be implicit in its topology so that Cartesian 
geometry need not be used (but see Section 5) 
 
Principle 5. Higher level spatial configurations should not be constrained by design, but should be 
allowed to emerge from the images and scenes in its environment 
 
Principles 1 and 2 are the fundamental theoretical underpinning of our approach. They are 
supported by algebraic mathematics that can be implemented as data structures in real computers. 
 
Principle 3 is based on the need for the system to adapt to new things. Any system with pre-
designed primitives is constrained by what the designer puts in. This spans the space of 
possibilities. Any object not in that space cannot be recognised. This is one reason why 
conventional machine vision collapses outside its design domain. 
  
If the low level configurations are not to be designed in, where can they come from? We have 
experimented with forming low level constructs by random configurations of pixels. We have 
found that generating random masks gives some discrimination between the circular and diamond 
shapes discussed earlier. However, there remain many open questions, including the optimum 
diameter for a retinal configuration. 
 
A similar argument suggests there can be no fixed multilevel architecture, and this too must 
incorporate random processes. Thus the ‘relevant’ configurations of configurations, and the 
resulting ‘constructs’ have to be discovered by the machine. 
 
Thus there are two parts to our architecture. The simplest involves the machine learning particular 
objects and scenes within a given hardware topology. In other words, in the simplest case the 
machine is fixed, and recognition takes place by values and parameters changing within that 
structure. 
 
The more demanding part of the architecture involves evolutionary principles to generate and 
select ‘appropriate’ retinal primitives, and to generate and select appropriate topologies to support 
relational structure throughout the multilayer aggregation.  
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4. Low Level Vision processing 

4.1 Retinal Neurons 
Our approach to low-level machine vision is based on the observation that almost any asymmetric 
mask will act as an edge detecting filter. For example, Figure 22 shows a Suduku puzzle taken at 
random from the Internet. From the top left corner a mask was formed with pluses corresponding 
to numbers and minuses corresponding to blank squares. This mask passed over the image in 
Figure 22(c) to give the result in Figure 22(d) 
 
 
 
 
           
 
 
 
 
 
(a) random mask source       (b) the mask                     (c) cup and bottle                 (d) cup and bottle filtered 
 
Figure 22.  Random masks filer images 
 
By a retinal neuron we will mean a processing device that takes inputs directly from an image 
(analogous to the retina in the eye) and processes them. In the simplest case a retinal neuron will 
‘fire’ when it matches a configuration, passing a non-zero value to its output (Figure 23). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23.  A retinal neuron 
 

 

 +  –    + 
 –   –   + 
 –   –   – 
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4.2 Traffic-based Pixel Matching Techniques for Recognition 
 
In the proposed multilevel architecture, let the pixels define a base level, Level 1. (Lower level 
sub-pixel constructs are possible (e.g. Johnson and Picton, 1985), but not discussed here. At this 
level of representation are the usual greyscale histograms.  
 
The next level of representation must be characterised by sets of pixels structured by relations – 
nothing else is possible! So, Level 2 in the representation will consist of sets of pixels under n-ary 
relations. To illustrate this, consider the pixel configurations shown in Figure 24. To establish 
them at the lowest level in the representation, these will be called retinal constructs. 
 
In Figure 24(a) there is a central sensor, such as light-sensitive rod, responding to relative 
darkness, surrounded by six other sensors, numbered 0, 1, 2, 3, 4 and 5. There are 26 = 64 
configurations of light-dark for these six satellite sensors. The configurations have been designed 
to have a topology corresponding more closely to packed cells than the usual Cartesian grid. Also 
they are designed using the ‘next but one’ neighbours according to Simon’s three pixel principle 
[7][8]. 
 
 
 
 
 
 
 
 (a)  hexagonal array of pixel sensors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) the 64 retinal configurations 
 
Figure 24. Hexagonal pixel constructs 
 
These configurations are examples of masks or filters which are widely used in machine vision. 
As such they have been designed by the programmer (me!) and have the problem of subjective 
selectivity. Although these configurations are attractive for a number of reasons, how can one be 
sure that they are the most appropriate for any particular objects in any particular environment?  

32      33      34      35       36       37      38      39 

48       49      50      51      52        53      54     55 56      57       58      59      60       61      62     63 

0        1         2        3         4        5        6        7 8        9        10      11      12       13      14     15 

16       17      18      19      20        21      22     23 24      25       26      27      28       29      30     31 

40       41       42      43      44      45      46      47 

0  1 
5      2 
4   3 

central sensor 

satellite sensors 
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(a) circle and diamonds    (b) line segments 
 
Figure 25. Examples object classes 
 
The sixty four retinal configurations in Figure 24 were used to analyse eighty hand-drawn shapes, 
forty ‘circles’ and forty ‘diamonds’, similar to those shown in Figure 25. Each dark pixel in the 
shapes was analysed by inspecting its surrounding pixels and assigning to it one of the sixty four 
retinal configurations. As a first level of analysis, the numbers of each configuration were 
counted, giving a 64-element vector for each configuration. The vectors of the configurations 
with non-zero frequencies are given in Table 1. 
 

4.3  Single Level Neural Classification 
 
Inspection of Table 1 suggests that the frequency vectors alone are sufficient for classification of 
the simple circle and diamond shapes, and indeed they are. For example, configurations 14 and 31 
have much higher  
 
 
 
 
 
 
 
 
 
 
 
 
 
frequency for the circles than the diamonds, reflecting their natural response to vertical left and 
right edges respectively. Similarly, configurations 7, 30, 51 and 57 favour the diamond shape by 
responding well to oblique edges. 
 
In principle, a conventional multilayer perceptron neural network will classify such data well, 
assuming convergence. Note that in Table 1, twenty nine of the sixty four possible configurations 

diamond 
  3  4  6  7 12 14 15 24 28 30 31 32 33 35 39 46 47 48 49 51 53 55 56 57 59 60 61 62   63 
  2  1  1 22  1  1 21  2 25 24  0  1  2 21  0  1 21  1  2 25  1 21 18 24  2  0 17 24  978 
  2  1  1 25  1  2 21  1 14 26  1  0  1 18  1  1 24  1  2 18  0 17 25 27  0  2 23 12  885 
  1  0  1 27  2  4 23  0 27 17  3  0  0 25  2  0 25  2  2 28  0 22 28 19  0  4 26 25 1256 
  2  0  0 30  1  3 17  2 26 29  0  0  0 22  5  0 28  1  3 28  0 20 21 31  0  3 20 25 1292 
circle 
  3  4  6  7 12 14 15 24 28 30 31 32 33 35 39 46 47 48 49 51 53 55 56 57 59 60 61 62   63 
  0  0  2 14  0  8 20  0 25 19  6  0  1 11 31  0 12  0 22 17  0  8 10 14 19 21  6 21 1322 
  0  0  0 18  2 18 10  0  6 18 16  0  0  8 33  0 14  2 16 18  0  4 17 13 14 32 15  4 1253 
  0  0  2 13  1 11 37  0 10 12 10  0  0 12 28  0 11  1 14 16  0  8 27 15 11 23 24  7 1375 
  0  0  1 18  1 14 10  2 14 18 12  0  1  8 23  0 15  1 22 14  0  5 10 12 20 19  9 13 1083 
 
Table 1 
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respond to the eighty shapes, leaving thirty five retinal configurations that do not respond to these 
shapes. Training the network with all sixty four configurations as inputs increases the 
computation and the possibility of non-convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. A single level vector neural classifier 
 
Table 2 gives the configuration counts for the line segments shown in Figure 25(b). The response 
of these objects to the retinal configurations is completely different to that for the shapes. These 
response vectors can also be used for robust classification between the steep and shallow line 
segments. It is encouraging that a single layer neural classifier can discriminate these line 
segments, since it is believed that animal vision uses such primitives.  
 
However, these classifier soon break down when the number of objects to be classified gets large, 
as is required for recognising a comprehensive set of line segments. 
 
steep lines 
  0 1  4 5  8  9 32 36 40   
  9 0 13 2  0  0 13 21  2   
  3 0 11 1  1  0 12 27  0 
  8 1 17 1  0  0 16 15  2 
  7 0 11 0  0  0 11 28  0 
 
Table 2. Line segments frequencies ( Fig 4) 
 
The approach to pattern recognition illustrated here maps the object to a vector of numbers 
counting the frequency of ‘interesting’ features of the objects, interprets the vector as a point in 
multidimensional space, and classifies the points according to some notion of ‘similarity’. In 
terms of our objectives it begs two questions: 
 

1. where do the ‘interesting’ features come from? 
 
2. is a single level of processing adequate to discriminate objects in complex scenes? 

 
In answer to first question, in our illustrative application, the ‘interesting’ features were designed 
in by the programmer. Delegating the selection of ‘interesting’ features to a programmer 

diamond 

circle 

shallow lines 
  0  1 4 5  8  9 32 36 40  
 21  7 5 1  7  4  5  1  1 
 32  4 0 0  4  5  0  0  0 
 30 10 1 1 10 18  1  0  1 
 28 11 1 3 13 10  3  0  1 
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inevitably means that the system will be limited in its ability to recognise objects, and unable to 
adapt to recognise objects that are very different from the design specification. 
 

 
 
Figure 27. Shapes with equivalent vertical and horizontal lengths 
 
It is easy to show that this kind of single level of classification is inadequate in general for object 
recognition in vision. For example, the objects in Figure 27 all have the same length of vertical 
and horizontal edges. Conceivably the corners would have different retinal configurations, but the 
numbers would be small, and robust discrimination between the objects by a single vector of 
retinal configurations is unlikely. 
 
The answer to the second question must be that a single level of classification is not adequate. If it 
were, objects and scenes could be presented to a network as an input vector, to deliver recognition 
of classified objects. Even if this were possible in theory, it would be impractical because 
combinatorial explosion mean that the necessary input vectors would have astronomic numbers of 
elements. 
 

4.4. Interpreting the data as constructs 
 
In the previous section it has been seen how some retinal configurations can be associated with 
constructs such as ‘oblique’, ‘vertical’, ‘left and ‘right’ edges. These are human constructs that 
can be imposed on the data. The machine, of course, does not share these constructs explicitly in 
its representation. Thus there is a co-relation between our concept of a ‘round edge’ and, say, the 
pixel configuration 49, , taking a relatively high value for circular objects. 
 
Put like this is becomes possible to understand why conventional approaches to machine vision 
have failed so comprehensively. As programmers we seek appropriate descriptors or constructs to 
represents objects to be recognised. We look at an object, and abstract properties such as 
‘roundness’ and ‘straightness’, that our language conveniently has terms to describe. We then 
seek machine-based abstractions that match these linguistic constructs.  
 
But as animals we constantly recognise objects for which there is no explicit name. For example, 
most readers will recognise the shape  as being one of those in Figure 27, even though this 
shape has no explicit common name. Since I want to talk about it I will give the name of ‘double-
square shape’. Then I can say things like ‘the double square shape is between the cross and the 
square in Figure 27, and even begin to reason about double-square shapes. However, if such a 
shape were to be recognised within a machine, it can simply be named implicitly by the data 
structures, possibly, and its position in memory. 
 
Freeing ourselves from serendipity abstractions in a particular programmer’s head, and designing 
machines to form their own constructs is here seen as the way forward. To some extent this is 
what multilayer neural networks do, and some researchers assert that each neuron is processing a 
construct. However, that approach is relatively blunt, since the constructs are always implicit. 
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4.5. Multi-Level Pattern Recognition 
 
Figure 28 shows one of the diamond shapes of Figure 25 with its numbered retinal pixel 
responses letter-coded as follows:  A (configuration 7 in Figure 24), B (14), C (15),  D(24), E (25), 
F (30), G (35), H(47), I (49), J (51), K (53), L (55), M(56), N (57), O (61), P (62), dot (63), and X 
(all others). Note the sequence ACH (    ) recurs along the bottom left edge. This can be 
written as a simplex, á A, C, H; R horizontal ñ, in the terms of Section 2. This can be considered to be 
a configuration of retinal configurations, and exists at a higher level of aggregation. 
 

 
 
Figure 28. á A, C, H; R horizontal ñ as an emergent construct 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Iterated assembly up the representation                    (b) iterated assembly through cones 
 
Figure 29. Multi-level aggregation 
 
The ACH configuration emerges from the diamond shape, Let it be denoted sABC. Then pairs of 
such configurations can form the structure á sACH,i , sACH,j ; R above_left ñ, at yet another level of 

Level N  high level constructs 
 

Level 3  intermediate constructs 

Level 1  retinal configurations      
 

A C H 
A C H 

A C H 

 L  L G G 
 L  L G G 

 L  L G G 

   
 

   
  

diamond 

Level 2  intermediate constructs 



        

22:51:53  29/05/2006                                                                                                                 Page 24 of 37 

aggregation. Let this structure be denoted by the symbol sACH,. Then these too can be aggregated 
to form a structure that eventually aggregate into structures involving all seven of the ACH 
sequences. From a human perspective this could be called a straight edge. From a machine 
perspective this is a learned or evolved structure, physically embedded in the machine that has 
emerged because there is advantage in it doing so. 

4.6. Spatial Relationships 
 
The configurations in machine vision inherently involve spatial relationships. Conventional 
approaches to machine vision often take a highly geometric approach to spatial relationships, 
based on the Cartesian geometry of the pixel grid. It is interesting to consider whether Cartesian 
geometry is a product of the human mind, or part of the fundamentals of its workings. 

From our perspective it is much easier, in principle, to represent multilevel spatial structure 
through multilevel tessellations and connections between levels. In other words, we propose to 
proceed on the basis of spatial relationships being hard-wired into the substrate of the vision 
system. This idea is illustrated in Figure 30, where four objects have been recognised, and the 
spatial relationship between them is established (and computed) by located connections between 
the site of response and higher level processing that recognises the object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. Hard-wired spatial relationships 

4.7 Limitations on the low level matching operations 
Although they give good results in many cases, these low level pixel matching operations have 
considerable limitations. In particular they are not invariant to any of the following 
transformations 
 
 translation   (images have to be focussed under the mask) 
 scale            (images can be normalised for scale 
 rotation        (not invariant – rotated copies must be used) 
 sheer            (not invariant) 
 perspective  (not invariant) 
 topological  (not invariant) 
 
However, in cases where the object is simple, these low level masks can be very useful. 

diamond 
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5. Higher Level Vision processing 
 

5.1 The Object-Position Representation Problem 
 
One of the greatest difficulty in this research has been trying to understand how higher level 
objects can have their position represented within the multilevel representation. The position of 
lower objects is less problematic due to their local nature. However, for large objects in images 
there is the question of where they are and, more pertinently, how to represent their position. 

In machine vision various methods are used to locate objects. One common method is draw an 
enclosing box with the object located, by definition, at the centre of the box. This is the approach 
underlying the low-level processing in the previous section. 

The problem addressed at the higher level is illustrated in Figure 31. Here there is an object in the 
image which we suppose can be abstracted and classified. The question is where is it? Can it only 
be located within a box? If it were a large irregular object the box could be very big, leaving the 
position of the object ambiguous within the box. Or can the object be located at a particular pixel 
point, as shown in Figure 31(d). The problem with this approach is that a large object will have an 
influence over may pixels, and not just the pixel ‘holding’ it. 

 
 
 
 
 
 
 
       (a) object                 (b) object recognised    (c) the object is in a box?            (d) the object is at a point? 
   
Figure 31.  The problem that the object can be recognised, but where is it? 
 
Although the solution of representing objects by a pair of Cartesian coordinates is attractive, the 
problem seems to get worse at higher levels. For example, in Figure 32 three of the line-like 
objects are recognised at Level N+1 and form a triangular object at Level N+2. Then the three 
objects are mapped to points and, and the located linear objects can be mapped to a triangular 
object with position represented at another point? 
 
 
 
 
 

 
 
 
 

 
Figure 32.  Where is the triangle? 
 
 

object of this type is 
here, in this box? 

object of this type is 
here, at this point? 

The triangle is here? 
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Using the Cartesian grid representation, and the method of Cartesian geometry, a straight line is 
easy to represent as a pair of points, or four numbers: (x1, y1), (x2, y2). This is very convenient for 
conventional engineering approaches to machine vision, since given two pixels represented by 
two points (x1, y1), (x2, y2) the line between them is easy to specify as y = (y1 - y2)/(x1 - x2) * x + y1 
– x1 * (y1 - y2)/(x1 - x2)), and this can be manipulated in various ways to find points of intersection 
or to test closeness. More complicated methods allow a wide variety of curves to be represented 
inside computers, including splines, Bezier curves, and calculus-based methods. 
 
 
 
 
 
 
                 (a)                                                     (b)                                                          (c) 
 
Figure 33. Biological vision probably does not involve setting up and solving equations 
 
Figure 34 illustrates another potential problem with linear features. In principle curves such as the 
sides of a guitar are relatively easy to find using conventional methods, and in our architecture, 
they should be assembled to form higher level structures. When both sides are clearly 
recognisable, this aggregation may be simple. But it often happens that contours of objects merge 
with contours in the background, as illustrated in Figure 34(b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34.  How can lines be subdivided in the representation? 
 
 
If mathematics were at our disposal, important features of images could be calculated such as the 
intersections of the lines in Figure 34. The problem with this approach is that if used in a self-
adapting vision system, the system cannot manipulate the equations by itself. Thus any 
mathematics like this has be ‘hard-wired’ into the system and, apart from changing particular 
values and parameters, cannot be changed. In contrast to this, biological vision systems probably 
do not set up mathematical equations, but process the information differently. 
 
 
 
 

Guitar Body Shape ??? 
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5.2 Biologically inspired approaches to linear features 
 
 
 
 
 
 
 
 
 
(a) lines can be seen between objects        (b) objects can make contours   (c) more is less for lines 
 
Figure 35. Human vision constructs lines and contours from configurations of objects 
 
Human vision allows us to see linear features almost everywhere, even when there is hardly any 
explicit information. In Figure 35(a) a few irregular scribbles clearly forms a linear feature. In 
Figure 35(b) just eight car shapes form a circle. However, it is not just the presence of features 
that counts, and sometimes ‘more is less’, as illustrated in Figure 35(c). 
 
These examples make the question of what is and where is a line even more perplexing. Even 
allowing that the lines and circle can be found in Figure 35, where exactly are they? Even if the 
co-linear features in Figure 35(a) could be aggregated into a ‘line’ as illustrated in Figure 36, 
where is the line, if it not to be represented in a Cartesian data structure? 
 
  
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36. How can lines be represented in non-Cartesian data structures? 
 
 

Line 
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In principle, the problem of representing lines can be solved by using a two-input neuron that 
fires when the ends of the line are activated, as shown in Figure 37. Of course this is not a 
practical solution, since it would imply the existence of a line between every pair of activated 
pixels, and the number of ‘lines’ detected would be astronomic. If two pixels is not enough to 
signify a line, how many are needed? If all the intermediate pixels were included, the number of 
masks required to represent possible lines in images would also be astronomic. How then can 
lines be represented without recourse to coordinate geometry? 
 
 
 
 
 
 
 
 
Figure 37. An impractical ‘solution’ to the line representation problem. 
 
 

5.3 Synthetic Saccades 
 
This issue of finding a way of representing the geometry of images without using traditional 
mathematical techniques became a major problem in this research. Even representing structures 
corresponding to the simple idea of ‘line’ seems very problematic.  
 
One solution to it appeared late in the project, and has only been partially explored. It is based on 
the observation that biological vision is characterised by saccades, with the eye moving to focus 
different parts of the image on the fovea. The sequence of movement of the ‘eye’ then establishes 
relational structure between the pixels and features. 
 
 
 
 
 
 
 
 
Figure 38. Constructing relational structures by moving the focus of vision. 
 
 
The human eye has six muscles to move it (Gregory, 1998). We implemented a low-level 
neuronal approach in which retinal neurons had been trained from a contour image, and a 
movement impulse was associated with each. The idea was that that the focus of the artificial 
‘eye’ should move over the image automatically in response to what the image contains. 
 
This approach moves the representation problem to another level, since the contour then becomes 
a sequence of neuronal firing which encodes the feature being ‘tracked’. 
 
 
 
 

“The line exists” 
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Figure 39. Synthetic saccades 
 
Figure 39 shows an implementation of this approach using neurons sensitive to vertical features. 
As can be seen, vertical features are tracked with great robustness. For clarity in the diagram, 
neurons sensitive to horizontal features were not used. 
 
Although this approach is potentially interesting from the perspective of biological analogy, and 
although the tracking was implemented using neuronal detectors linked to virtual muscles, the 
approach is very similar to contour tracking which has a long and varied history in machine 
vision. The approach was not pursued further in this phase of the research, but remains a 
possibility for further investigation. 
 

5.4  The Locating irregular object experiment 
 
In the context of the problem of locating objects, we conducted an experiment to see to what 
extent the human vision system is able to fix accurately the x-y position of objects. To investigate 
this we conducted an experiment in which a number of irregular shapes where displayed on a 
screen. Then the subject (Johnson) placed a mouse at the ‘centre’ of the objects, moving from one 
to another so as not to fixate on a given point. The red dots in Figure 40 show the distributions of 
centres. Rather remarkably, these are very tightly grouped for all the figures, no matter how 
irregular. This supports the hypothesis that human vision locates objects very accurately, no 
matter what the shape. 
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Figure 40. Locating the positions of irregular objects. 
 
This experiment was pivotal in the research because it suggested that objects can be represented 
by data attached to precise x-y points, rather than areas as we have discussed previously. 
 

5.5 Relational Data Structures and Hypernetworks 
 
The strong result of the position-location experiment was not expected and, despite all the 
disadvantages of the Cartesian representation, suggested that it could be useful and even 
biologically plausible to represent position by coordinate pairs. 
 
Generally in machine vision, precise geometric matching of objects is rare, since the topological 
information that everything is ‘connected the right way’ is usually what is required. The 
hypernetworks introduced earlier in this report are ideal for representing relational structure, and 
they are fundamental in our multilevel architecture. Whatever the geometry, the higher levels will 
be characterised by hypernetworks and hypernetworks of hypernetworks. Thus we investigated 
the use of geometrically registered hypernetworks in which the hyper-vertices are linked to the 
pixel grid. 
 
The general architecture is illustrated in Figure 41. It is characterised by every vertex at every 
level being associated with pixel in the original image, thereby linking all objects at all levels of 
abstraction back to the original image. 
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Figure 41.  Representing topology and geometry in a multilevel hypernetwork 
 
 

5.6  Operators in the Multilevel Hypernetwork Representation 
 

5.6.1 Geometry and mathematical constructs in the hypernetworks 
 
The great advantage of the hypernetwork representation is that it combines geometry and 
topology. Although the specification of our system precludes application-specific knowledge and 
opportunistic programming, various operators expressing general geometric and topological 
properties can be hard-wired into the system. Thus for example, it is useful to know when two 
objects are ‘close’, and to have supporting structure for making such a concept operational in a 
given application, and allowing the definition to adapt to another application. 
 
We have just begun to investigate such operators, but the combination of geometry and topology 
offered by geometrical hypernetworks opens up many possibilities. 

Target 
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5.6.2 Robust low level gradient run primitives 
 
In our previous machine vision work we have developed many useful concepts, including the 
notions of gradient runs and gradient polygons [Johnson, 1995, Johnson and Simon, 2001]. These 
are very robust low level features in digital images, and they can be found using both neuronal 
and algorithmic means. 
 
Figure 42(a) illustrates gradient runs for the horizontal case. They are simply runs of pixels in 
which the greyscale decrease (left-to-right darker gradient runs) or increase (left-to-right lighter 
gradient runs). These gradient runs form very robust polygons (Fig 42(b)) in objects where there 
features, as illustrated in Figure 42(c). 
 
 
 
 
 
 
                  
 
(a) horizontal gradient runs                                                                 (b) a gradient polygon 
 
 

 
(c) left-to-right darker gradient polygons 
 
Figure 42.  Gradient runs and gradient polygons 
 
Gradient polygons occur in images irrespective of their content, and they are excellent candidates 
as low level primitives in our architecture. Figure 43 illustrates how gradient runs can be 
assembled into higher level structures in the hypernetwork. 
 
 

darker lighter 
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Figure 43. The left-right-darker gradient runs form hypernetwork structures 

 

5.6.3 Hoffman’s Rules 
 
In his book Visual Intelligence: how we create what we see Donald Hoffman [1998] gives a lucid 
account of how the brain constructs what we see from images falling on the retina using a set of 
interacting rules. These rules are behaviourist in that they say what happens rather than giving the 
details of the computational mechanisms behind what happens. Nonetheless they are very 
interesting from our perspective because Hoffman’s rules apply to all images, irrespective of the 
domain from which they come. Thus this set of rules is entirely consistent with our objective of 
creating machine vision systems that are not application domain specific. We list these rules 
below, and illustrate some of the simpler ones. The rules are quoted verbatim, and some are more 
self-explanatory than others. They are all reproduced for completeness, but to understand them all 
it may be necessary to consult Hoffman’s book. 
 
Hoffman begins with his Fundamental role of visual rules: you construct visual worlds from 
ambiguous images in conformance to visual rules, such as the Rule of generic views: Construct 
only those visual worlds for which the image is a stable (i.e., generic) view, illustrated in Figure 
44. 
 
 
 
 
 
 
 
 
           (a) construct this           (b) don’t construct this         (c) don’t construct this 
 
Figure 44. 
 

Level N+1 
 
 
 
 
 
 
 
Level N 
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Hoffman’s rules are listed below 
 
Rule 1. Always interpret a straight line in an image as a straight line in 3-D 
 
Rule 2. If the tips of two lines coincide in an image, then always interpret them as coinciding in 
3-D 
 
 
 
 
 
 
 
 
(a) a cube is hard to construct in          (b) a cube is easy to construct 
     the Kopfermann figure 
 
Figure 45. It is difficult to construct a 3-D vertex in the Kopfermann figure 
 
 
 
Rule 3. Always interpret lines collinear in an image as collinear in 3-D 
 
Rule 4. Interpret elements nearby in an image as nearby in 3-D 
 
Rule 5. Always interpret a curve that is smooth in an image as smooth in 3-D 
 
Rule 6. Where possible, interpret a curve in an image as the rim of a surface in 3-D 
 
Rule 7. Where possible, interpret a T-junction in an image as a point where the full rim conceals 
itself: the cap conceals the stem 
 
 
 
 
 
 
 
 
 
 
 
Figure 46. The doughnut image illustrates Rules 6 and 7. 
 
Rule 8. Interpret each convex point on a bound as a convex point on a rim 
 
Rule 9. Interpret each concave point on a bound as a saddle point on a rim 
 
Rule 10 Construct surfaces in 3-D that as smooth as possible 
 
Rule 11. Construct subjective figures that occlude only if there are convex cusps 



        

22:51:53  29/05/2006                                                                                                                 Page 35 of 37 

 
Rule 12. If two visual structures have a non-accidental relation, group them and assign them to a 
common origin 
 
Rule 13. If three or more curves intersect at a common point in an image, interpret them as 
intersecting at a common point in space. 
 
Rule 14. Rule of concave creases: Divide shapes into parts along concave creases. 
 
Rule 15. Minima rule: Divide shapes into parts at negative minima, along lines of curvature, of 
the principal curvatures 
 
Rule 16. Minimal rule for silhouettes Divide silhouettes into parts at concave cusps and negative 
minima of curvature 
 
Rule 17. The salience of a cusp boundary increases with increasing sharpness of the angle at the 
cusp. 
 
Rule 18. The salience of a smooth a boundary increases with the magnitude of (normalized) 
curvature at the boundary. 
 
Rule 19. Salient boundaries: Choose figure and ground so that figure has the more salient part 
boundary. 
 
Rule 20. Salient parts: Choose figure and ground so that figure has the more salient parts. 
 
Rule 21. Interpret gradual changes of hue, saturation, and brightness in an image as changes in 
illumination 
 
Rule 22. Interpret abrupt changes of hue, saturation, and brightness in an image as changes in 
surfaces 
 
Rule 23. Construct as few light sources as possible 
 
Rule 24. Put light sources overhead 
 
Rule 25. Filters don’t invert lightness 
 
Rule 26. Filers decrease lightness differences 
 
Rule 27. Choose the fair pick that’s most stable 
 
Rule 28. Interpret the highest luminance in the visual field as white, fluorent, or self-luminous 
 
Rule 29. Create the simplest possible motion 
 
Rule 30. When making motion, construct as few objects as possible, and conserve them as much 
as possible 
 
Rule 31. Construct motion to be as uniform over space as possible 
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Rule 32. Construct the smoothest velocity field 
 
Rule 33. If possible, and if other rules permit, interpret image motions as projections of rigid 
motions in three dimensions 
 
Rule 34. If possible, and if other rules permit, interpret image motions as projections of 3D 
motions that are rigid and planar. 
 
Rule 35. Light sources move slowly 
 

5.7. Bottom-up and Top Down Dynamics 
 
The multilevel hypernetwork representation that we propose implies a dynamic to pattern 
recognition in machine vision. In general the object recognition process will be both bottom-up 
and top-down. 
 
As discussed in Section 2, the relational aggregator has two parts: the set-finder that identifies the 
potential parts of interesting objects, and the relational tester that ensures the objects are related as 
they should be. 
 
In the light of the discussion in this section it is possible to see that the conceptually difficult 
relational tester may be implemented in terms of mathematical operations manipulating the 
geometry of graphical objects such as gradient polygons. 
 
The set-finders at the lowest level will include algorithmic processors such as those that find 
gradient polygons. These polygons have many patterns of numbers associated with them, such as 
their greyscale distribution, and also their two-dimensional grey-scale-gradient distributions 
[Johnson and Simon, 2001]. These numbers may be used in bottom-up and top-down processes. 
 
Hoffman’s rule give a number of ways parts of images can be assembled and disassembled in 
both bottom-up and top-down processes. 
 

6. Conclusions 
 
In this research we have investigated the architecture of machine vision systems that can adapt 
from one field of application to another. By hypothesis, the system has no prior system-specific 
knowledge. It must gain knowledge of specific systems by abstracting information from examples 
of objects pointed at by human operators requiring very low levels of skill and no computing 
programming knowledge. 
 
We have identified neuronal and algorithmic processing as appropriate to our system and both 
types can be integrated coherently. The system is initially bottom-up from pixels to features. It 
will involve intermediate and high-level operators analysing the geometric and topological 
properties of the emergent features, and they will play a part in a dynamic bottom-up top-down 
process. 
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The fundamental architecture proposed is based on hypernetworks, where these are inherently 
relational but can integrate objects with geometrical properties. The hypernetwork representation 
allows relational and numerical data, and supports geometrical operations implemented at high 
level of abstraction. 
 
The possibility of operating on images at high levels of abstraction is supported by the work of 
Hoffman, who gives thirty five rules for processing images that allow objects to be constructed in 
ways similar to the human brain. It is important to stress that Hoffman’s rules are application 
independent. 
 
The research has been undertaken in the context of extensive experimentation. Parts of the overall 
architecture have been implemented to the extent that they can illustrate the ideas discussed. 
 
From the research we conclude that, although it is a very ambitious objective, that it will be 
possible to build machine vision systems that can adapt from one field of application another. 
 
Our approach has involved researching systems that are totally autonomous in adapting to new 
imaging applications. Such systems could be embedded in human-computer systems opening up 
powerful new areas of application. 
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